
Nilesh Gupta, Inderjit Dhillon

Spring 2025

Machine Learning WB
CS391L
Lecture 9 - Introduction to Deep Learning

 What is Deep Learning?

Deep Learning (DL) is a subfield of Machine Learning (ML) that

leverages deep neural networks to model data

 Why Deep Learning?

Automatically learn representations from data, eliminating the

need for manual feature engineering

 Deep Learning - Enablers

Hardware - GPUs happened!

Data - Internet happened!

Frameworks - Pytorch, Tensorflow, JAX happened!

 Deep Learning - Applications

Any intelligent task!

● Object recognition

● Self driving

● Playing games

● Conversation agent

● Media (image/video) generation

● …
● Artificial general intelligence?

 Deep Learning - Key Components

Model - a “neural network” to map input data to output prediction

Loss - a scalar that quantifies how well a model fits our data

Optimization - a process (typically “gradient descent”) to adjust the

model parameters to minimize the loss

 Model
 Neural Networks

 Neural Networks - Brief History

● Early work on perceptrons in the 1950s laid the foundation

● Modeled after the human brain's neurons

Image source - https://mriquestions.com/what-is-a-neural-network.html

https://mriquestions.com/what-is-a-neural-network.html

 Neural Networks - Building Block

Neuron/Perceptron a basic computational unit

● Inputs - Receives multiple scalar inputs

● Weights - Each input has a weight, importance of that input

● Summation - The neuron adds up all the weighted inputs

● Non-linearity - A filter/activation function

 Linear Neuron

https://playground.tensorflow.org/

 Non-linear Neuron

https://playground.tensorflow.org/

 Non-linearities

● ReLU

● Sigmoid

● Tanh

● Softmax

 Deep Neural Network

https://playground.tensorflow.org/

A layered arrangement of neurons form a neural network

Input layer Hidden layer 1 Hidden layer 2 Output layer

 Deep Neural Network

https://playground.tensorflow.org/

Input layer Hidden layer 1 Hidden layer 2 Output layer

 Matrix Representation

https://playground.tensorflow.org/

Input layer Hidden layer 1 Hidden layer 2 Output layer

 Why Non-linearity?

https://playground.tensorflow.org/

 Why Non-linearity?

https://playground.tensorflow.org/ (link)

Combination of linear neurons is still linear

https://playground.tensorflow.org/
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3,2&seed=0.96961&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

 Why Non-linearity?

https://playground.tensorflow.org/ (link)

Combination of non-linear neurons is much more expressive!
Why?

https://playground.tensorflow.org/
https://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3,2&seed=0.96961&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

 Universal Approximation Theorem

A neural network with

● at least one hidden layer,

● using a sufficiently large number of neurons and,

● an appropriate activation function

can approximate any continuous function on a compact subset of

reals to any desired degree of accuracy.

 Universal Approximation Theorem

https://medium.com/analytics-vidhya/neural-networks-and-the-universal-approximation-theorem-e5c387982eed

Two neurons can be constructed to give a pulse function

 Loss Functions

 Loss

● A measure of how “good” our model is for an input

● Usually quantified as the cost of an incorrect prediction

 Empirical Loss

The total loss averaged over entire dataset

 Loss Function MSE

Mean Squared Error (MSE)

Binary Cross Entropy (BCE)

 Loss Function BCE

Cross Entropy (CE)

 Loss Function CE

 Example Task 1

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Task - is there a cat in the image?

Loss -

Input

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

 Example Task 2

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Task - determine the age of the cat?

Loss -

Input

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

 Example Task 3

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Task - determine cat vs dog vs bird?

Loss -

Input

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

 Optimization
 Gradient Descent & Backprop

 Optimization Overview

Minimize the loss by adjusting the model parameters

 Gradient Descent

Iteratively update parameters in opposite direction of the gradient

 Gradient Descent

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters w = w - η * (dL/dw)

where η is the learning rate.

 Gradient Descent

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters w = w - η * (dL/dw)

where η is the learning rate

 Backpropagation

● Neural networks require an efficient way to compute the

gradients for all parameters

● Backpropagation - chain rule to propagate errors from the

output back to the input layer

Forward Pass - Compute all intermediate activations and

Backward Pass - Starting at the output layer, compute the gradient

and propagate it backwards

 Backpropagation

Chain Rule - for a parameter that affects the loss through an

intermediate variable

 Sample DL Algorithm

 Task

Task - classify orange from blue

 Loss

Binary Cross Entropy (BCE)

 Model

Input layer Hidden layer Output layer

Sigmoid activation, 3 hidden neuron, 1 output neuron

 Optimization

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters w = w - η * (dL/dw)

where η is the learning rate.

 Optimization - Forward Pass & Loss

 Optimization - Backward Pass

 Optimization - Backward Pass

 Full Algorithm

● Step 1 (Forward Pass): Compute activations

● Step 2 (Loss Computation): Evaluate the loss using the predicted probability
and the true probability

● Step 3 (Backward Pass): Use backpropagation to compute gradients for all
parameters

● Step 4 (Parameter Update): Adjust model weights using gradient descent

Repeat for multiple steps until convergence

 In Practice

● Efficiency - mini-batch gradient descent

● Learning Rate - adaptive learning rate gradient descent

● Regularization - dropout, weight decay, early stopping, etc

