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  What is Deep Learning?

Deep Learning (DL) is a subfield of Machine Learning (ML) that 

leverages deep neural networks to model data



  Why Deep Learning?

Automatically learn representations from data, eliminating the 

need for manual feature engineering



  Deep Learning - Enablers

Hardware - GPUs happened!

Data - Internet happened!

Frameworks - Pytorch, Tensorflow, JAX happened!



  Deep Learning - Applications

Any intelligent task!

● Object recognition

● Self driving

● Playing games

● Conversation agent

● Media (image/video) generation

● …
● Artificial general intelligence?



  Deep Learning - Key Components

Model - a “neural network” to map input data to output prediction

Loss - a scalar that quantifies how well a model fits our data

Optimization - a process (typically “gradient descent”) to adjust the 

model parameters to minimize the loss



  Model
   Neural Networks



  Neural Networks - Brief History

● Early work on perceptrons in the 1950s laid the foundation

● Modeled after the human brain's neurons

Image source - https://mriquestions.com/what-is-a-neural-network.html 

https://mriquestions.com/what-is-a-neural-network.html


  Neural Networks - Building Block

Neuron/Perceptron a basic computational unit

● Inputs - Receives multiple scalar inputs

● Weights - Each input has a weight, importance of that input

● Summation - The neuron adds up all the weighted inputs

● Non-linearity - A filter/activation function



  Linear Neuron

https://playground.tensorflow.org/



  Non-linear Neuron

https://playground.tensorflow.org/



  Non-linearities

● ReLU

● Sigmoid

● Tanh

● Softmax



  Deep Neural Network

https://playground.tensorflow.org/

A layered arrangement of neurons form a neural network

Input layer Hidden layer 1 Hidden layer 2 Output layer



    Deep Neural Network

https://playground.tensorflow.org/

Input layer Hidden layer 1 Hidden layer 2 Output layer



  Matrix Representation

https://playground.tensorflow.org/

Input layer Hidden layer 1 Hidden layer 2 Output layer



  Why Non-linearity?

https://playground.tensorflow.org/



  Why Non-linearity?

https://playground.tensorflow.org/ (link)

Combination of linear neurons is still linear

https://playground.tensorflow.org/
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=3,2&seed=0.96961&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


  Why Non-linearity?

https://playground.tensorflow.org/ (link)

Combination of non-linear neurons is much more expressive!
Why?

https://playground.tensorflow.org/
https://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=3,2&seed=0.96961&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


  Universal Approximation Theorem

A neural network with 

● at least one hidden layer, 

● using a sufficiently large number of neurons and, 

● an appropriate activation function

can approximate any continuous function on a compact subset of 

reals to any desired degree of accuracy.



  Universal Approximation Theorem

https://medium.com/analytics-vidhya/neural-networks-and-the-universal-approximation-theorem-e5c387982eed

Two neurons can be constructed to give a pulse function



  Loss Functions



  Loss

● A measure of how “good” our model is for an input

● Usually quantified as the cost of an incorrect prediction



  Empirical Loss

The total loss averaged over entire dataset



  Loss Function MSE

Mean Squared Error (MSE)



Binary Cross Entropy (BCE)

  Loss Function BCE



Cross Entropy (CE)

  Loss Function CE



  Example Task 1

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/ 

Task - is there a cat in the image?

Loss -

Input 

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/


  Example Task 2

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/ 

Task - determine the age of the cat?

Loss -

Input 

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/


  Example Task 3

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/ 

Task - determine cat vs dog vs bird?

Loss -

Input 

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/


  Optimization
   Gradient Descent & Backprop



  Optimization Overview

Minimize the loss by adjusting the model parameters



  Gradient Descent

Iteratively update parameters in opposite direction of the gradient



  Gradient Descent

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters w = w - η * (dL/dw) 

where η is the learning rate.



  Gradient Descent

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters w = w - η * (dL/dw) 

where η is the learning rate



  Backpropagation

● Neural networks require an efficient way to compute the 

gradients for all parameters

● Backpropagation - chain rule to propagate errors from the 

output back to the input layer



Forward Pass - Compute all intermediate activations       and

Backward Pass - Starting at the output layer, compute the gradient 

and propagate it backwards

  Backpropagation

Chain Rule - for a parameter     that affects the loss      through an 

intermediate variable  

  



  Sample DL Algorithm



  Task

Task - classify orange from blue



  Loss

Binary Cross Entropy (BCE)



  Model

Input layer Hidden layer Output layer

Sigmoid activation, 3 hidden neuron, 1 output neuron



  Optimization

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters w = w - η * (dL/dw) 

where η is the learning rate.



  Optimization - Forward Pass & Loss



  Optimization - Backward Pass



  Optimization - Backward Pass



  Full Algorithm

● Step 1 (Forward Pass): Compute activations 

● Step 2 (Loss Computation): Evaluate the loss using the predicted probability 
and the true probability

● Step 3 (Backward Pass):  Use backpropagation to compute gradients for all 
parameters

● Step 4 (Parameter Update):  Adjust model weights using gradient descent

Repeat for multiple steps until convergence



  In Practice

● Efficiency - mini-batch gradient descent

● Learning Rate - adaptive learning rate gradient descent

● Regularization - dropout, weight decay, early stopping, etc


