Spring 2025

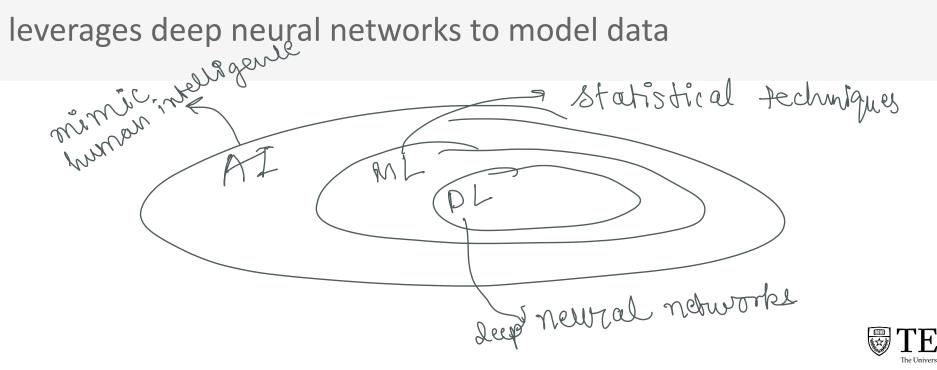
Machine Learning WB CS391L

Lecture 9 - Introduction to Deep Learning

Nilesh Gupta, Inderjit Dhillon

What is Deep Learning?

Deep Learning (DL) is a subfield of Machine Learning (ML) that



Why Deep Learning?

Automatically learn representations from data, eliminating the need for manual feature engineering

Deep Learning - Enablers

Hardware - GPUs happened!

Data - Internet happened!

Frameworks - Pytorch, Tensorflow, JAX happened!

Deep Learning - Applications

Any intelligent task!

- Object recognition
- Self driving

. . .

- Playing games
- Conversation agent
- Media (image/video) generation
- Artificial general intelligence?

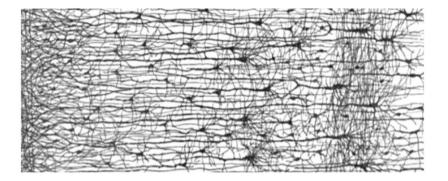
Deep Learning - Key Components

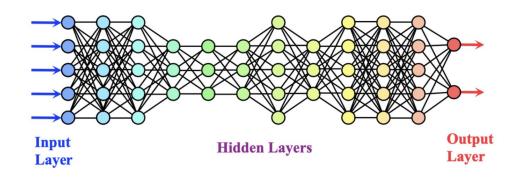
Model - a "neural network" to map input data to output prediction Loss - a scalar that quantifies how well a model fits our data Optimization - a process (typically "gradient descent") to adjust the model parameters to minimize the loss

Model Neural Networks

Neural Networks - Brief History

- Early work on perceptrons in the 1950s laid the foundation
- Modeled after the human brain's neurons



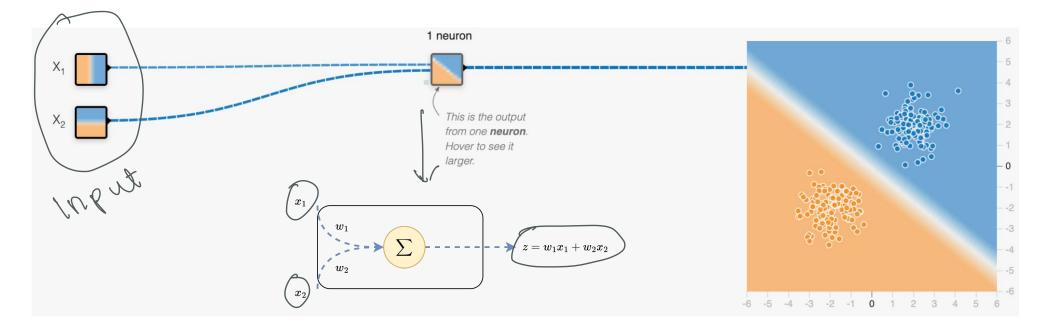


Neural Networks - Building Block

Neuron/Perceptron a basic computational unit

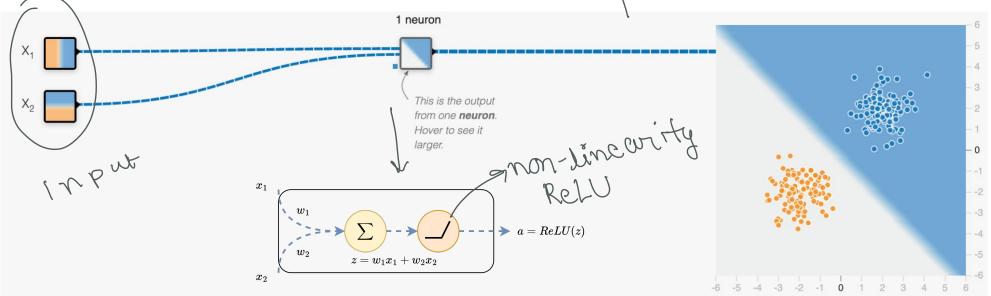
- Inputs Receives multiple scalar inputs
- Weights Each input has a weight, importance of that input
- **Summation** The neuron adds up all the weighted inputs
- Non-linearity A filter/activation function

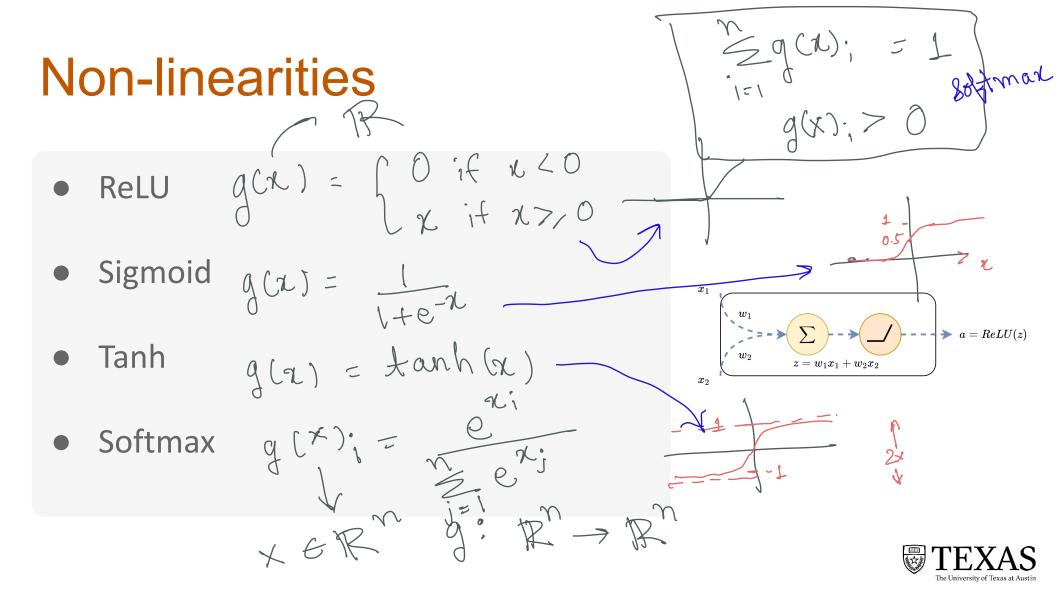
Linear Neuron

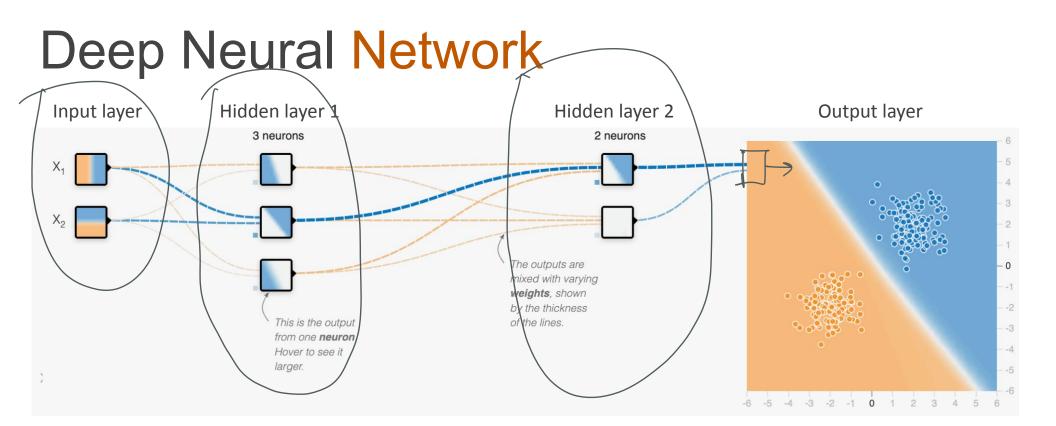


Non-linear Neuron



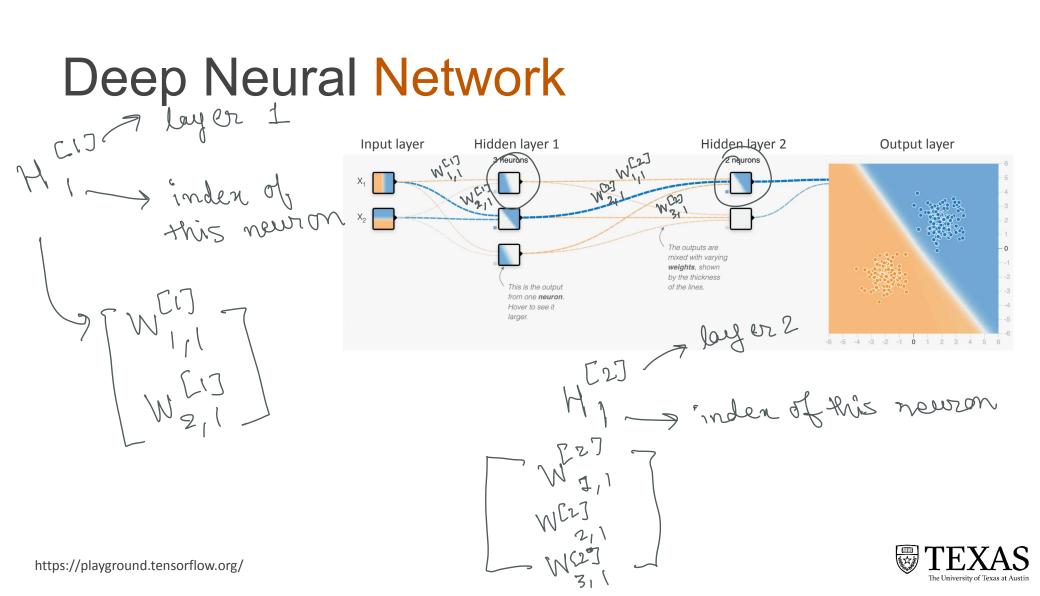






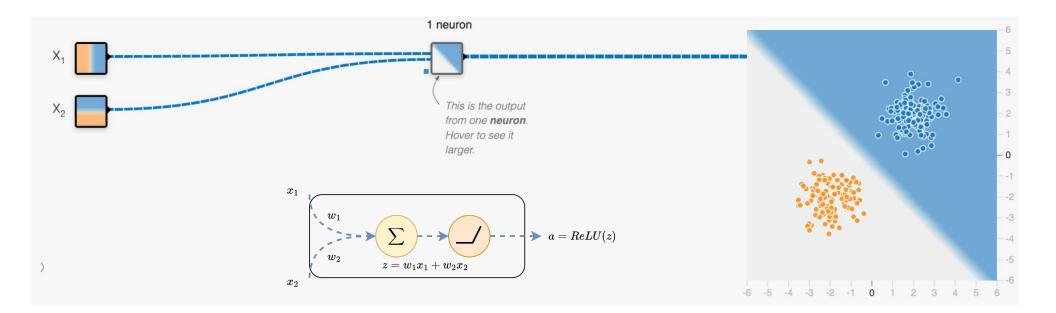
A layered arrangement of neurons form a neural network

https://playground.tensorflow.org/

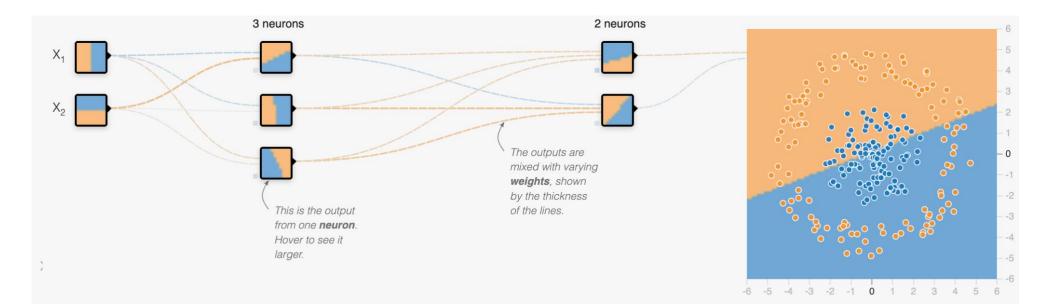


Matrix Representation G R2X Hidden layer 1 Input layer Hidden layer 2 **Output layer** WCIJER2X3 2 neurons HE2] WE2] ETR 3×2×2 The outputs are mixed with varving weights, shown by the thickness -9 W G R imput outputs of the lines. Datch batch XER 3X Z LIJ = INGIJ $A^{C_{17}} = \mathcal{O}(Z^{C_{17}}) \in \mathbb{R}^{3\times 1} \text{ botch}$ $Z^{C_{27}} = W^{C_{2}} A^{C_{17}} \in \mathbb{R}^{2\times 1} \text{ botch}$ $A^{C_{27}} = \mathcal{O}(Z^{C_{27}}) \in \mathbb{R}^{1\times 1} \text{ botch}$ $Z^{C_{37}} = W^{C_{37}} A^{C_{27}} \in \mathbb{R}^{1\times 1}$ $A^{C_{37}} = \mathcal{O}(Z^{C_{37}}) \in \mathbb{R}^{1\times 1}$ https://playground.tensorflow.org/ The University of Texas at Austin

Why Non-linearity?



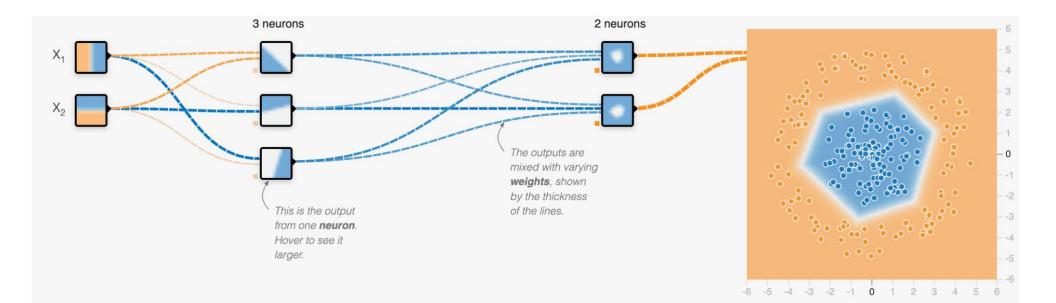
Why Non-linearity?



Combination of linear neurons is still linear

https://playground.tensorflow.org/ (link)

Why Non-linearity?



Combination of non-linear neurons is much more expressive!

Why?

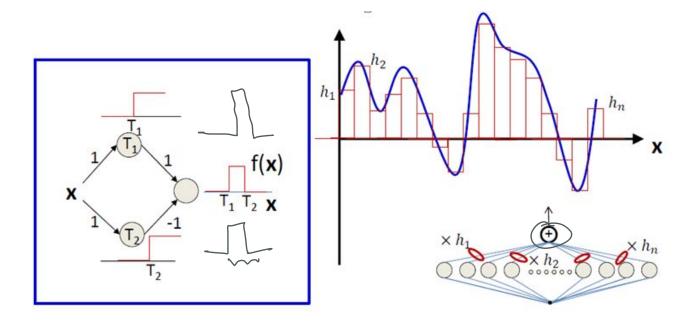
Universal Approximation Theorem

A neural network with

- at least one hidden layer,
- using a sufficiently large number of neurons and,
- an appropriate activation function

can approximate any continuous function on a compact subset of reals to any desired degree of accuracy.

Universal Approximation Theorem



Two neurons can be constructed to give a pulse function

https://medium.com/analytics-vidhya/neural-networks-and-the-universal-approximation-theorem-e5c387982eed

Loss Functions

- A measure of how "good" our model is for an input
- Usually quantified as the cost of an incorrect prediction

Empirical Loss

The total loss averaged over entire dataset

n -> data points $\begin{aligned} \mathcal{J} &= \int_{n}^{\infty} \sum_{i=1}^{n} l(0, \chi^{(i)}) \\ & &$

Loss Function MSE

Mean Squared Error (MSE) $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$ \mathcal{R} $\mathcal{L} = (\hat{y}_i - \hat{y}_i)^2 \qquad \mathcal{R}$

Loss Function BCE

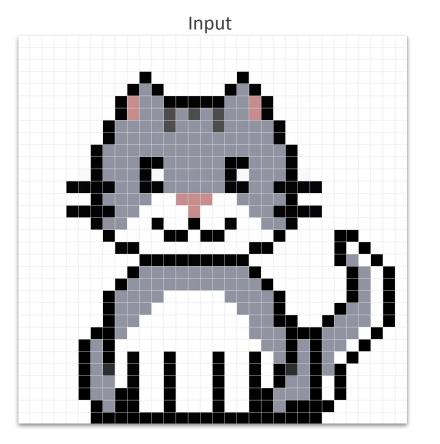
Binary Cross Entropy (BCE) Lagistic regression

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log \hat{y_i} + (1 - y_i) \log (1 - \hat{y_i}))$$

$$y_i = \Lambda_0 \sum_{i=1}^{N} (y_i \log \hat{y_i} + (1 - y_i) \log (1 - \hat{y_i})) \in (0, 1)$$

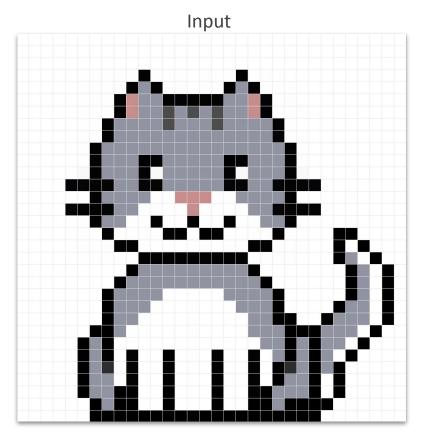
$$y_i = P(\text{ Jass being present}) \in (0, 1)$$

Loss Function CE Creneralization to C class classification problem Cross Entropy (CE) $\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{ij} \log \hat{y_{ij}}$ i=1 i=1C classes to classify into C=2 > BCE JER probability dist. -> Softmak V. =



Task - is there a cat in the image?

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/



Task - determine the age of the cat?

Loss -
$$MSE$$

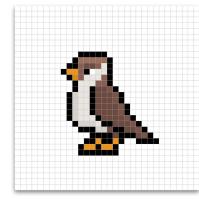
https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Example Task 3

Input

Task - determine cat vs dog vs bird?

Loss - CE softmark



3-way

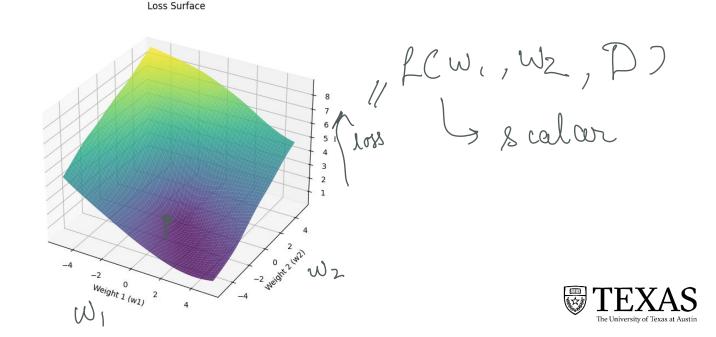
https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Optimization

Gradient Descent & Backprop

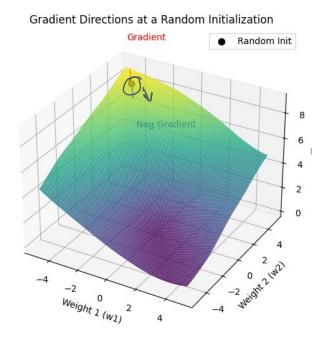
Optimization Overview

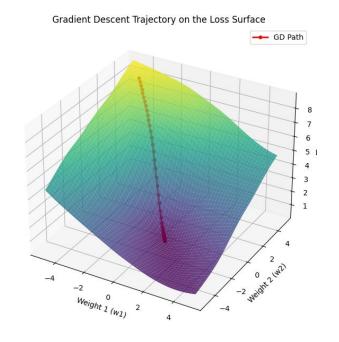
Minimize the loss by adjusting the model parameters



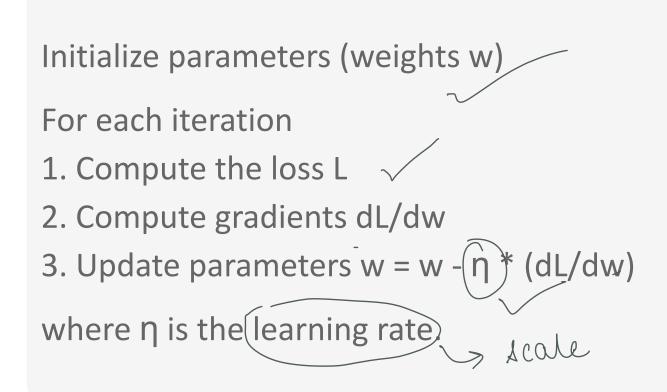
Gradient Descent

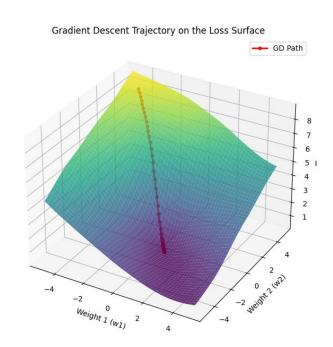
Iteratively update parameters in opposite direction of the gradient





Gradient Descent





Gradient Descent

Initialize parameters (weights w)

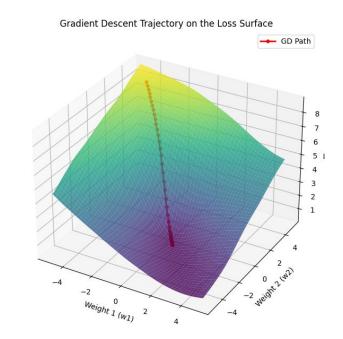
For each iteration

1. Compute the loss L

2. Compute gradients dL/dw

3. Update parameters $w = w - \eta * (dL/dw)$

where η is the learning rate



Backpropagation

- Neural networks require an efficient way to compute the gradients for all parameters
- **Backpropagation** chain rule to propagate errors from the output back to the input layer

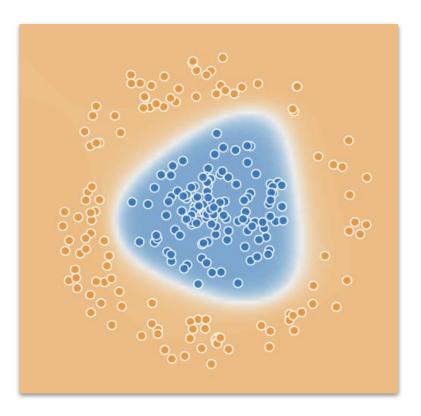
Backpropagation

Chain Rule - for a parameter θ that affects the loss \mathcal{L} through an intermediate variable z

 $\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial \theta}$

Forward Pass - Compute all intermediate activations $Z^{[l]}$ and $A^{[l]}$ **Backward Pass** - Starting at the output layer, compute the gradient and propagate it backwards

Sample DL Algorithm



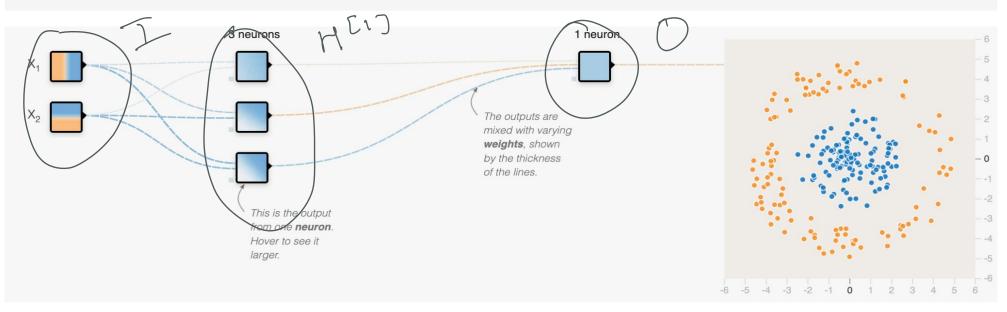
Task - classify orange from blue

Loss

Binary Cross Entropy (BCE) $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(y_i \log \hat{y}_i + (1 - y_i) \log \left(1 - \hat{y}_i \right) \right)$

Model

Sigmoid activation, 3 hidden neuron, 1 output neuron



Input layer

Hidden layer

Output layer

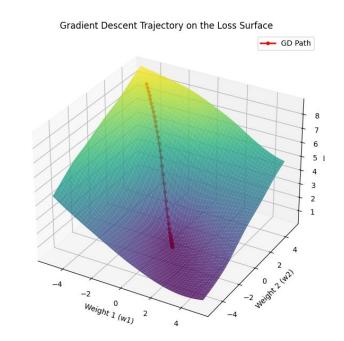
Optimization

Initialize parameters (weights w)

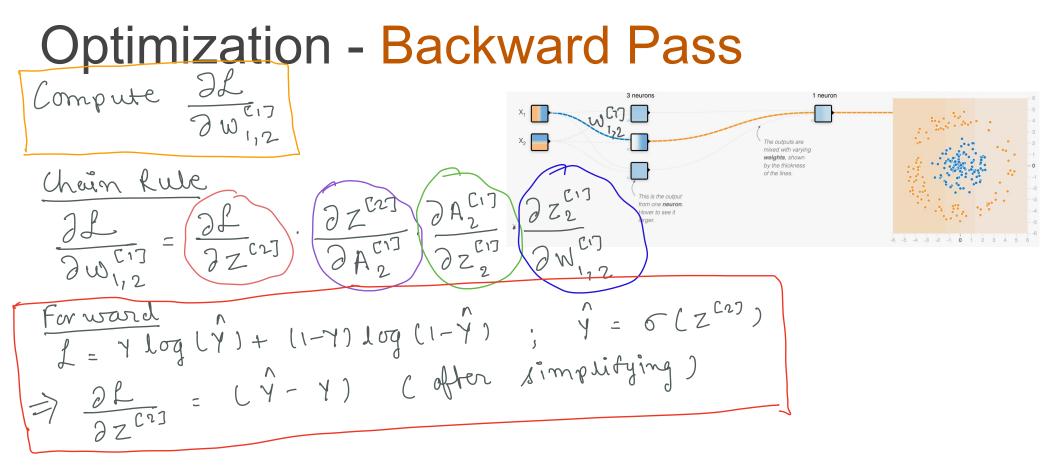
For each iteration

- 1. Compute the loss L
- 2. Compute gradients dL/dw
- 3. Update parameters $w = w \eta * (dL/dw)$

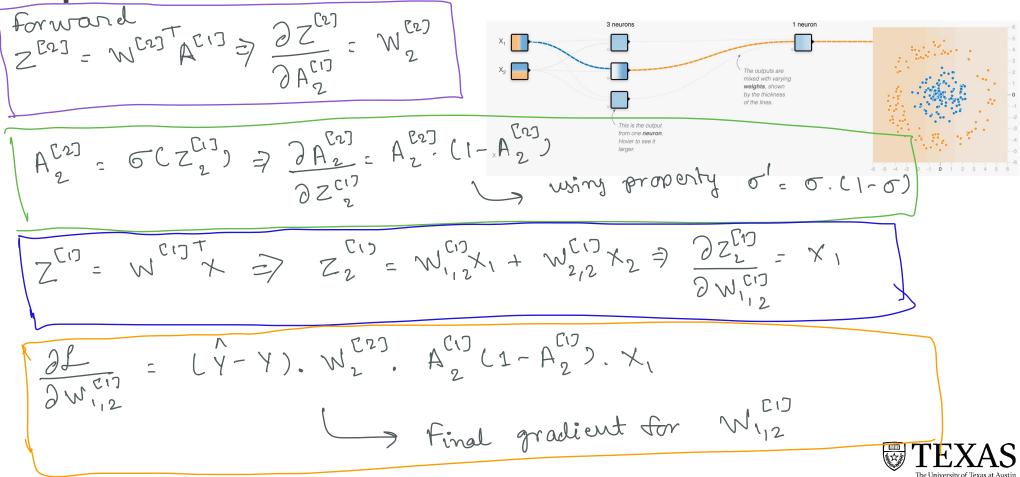
where η is the learning rate.



Optimization - Forward Pass & Loss $X \in \mathbb{R}^{2XI}$ 3 neurons 1 neuron EI], WEIJ ER3X2 The outputs are mixed with varying weights, shown by the thickness of the lines This is the output from one neuron. Hover to see it > INCZ] E IRIX3 NEIJX ; (AC,] $= O(Z^{[1]})$ $\gamma = \sigma (Z^{(2)})$ = $W^{E27}A^{E17}$; A^{E27} C27 $(\gamma, \log(\hat{\gamma}) + (i-\gamma), \log(1-\hat{\gamma}))$



Optimization - Backward Pass



Full Algorithm

- Step 1 (Forward Pass): Compute activations
- **Step 2 (Loss Computation)**: Evaluate the loss using the predicted probability and the true probability
- **Step 3 (Backward Pass)**: Use backpropagation to compute gradients for all parameters
- Step 4 (Parameter Update): Adjust model weights using gradient descent

Repeat for multiple steps until convergence

In Practice

- Efficiency mini-batch gradient descent
- Learning Rate adaptive learning rate gradient descent
- **Regularization** dropout, weight decay, early stopping, etc

