Spring 2025 I}EXAS

Machine Learning WB
CS391L

Lecture 9 - Introduction to Deep Learning

Nilesh Gupta, Inderijit Dhillon

What is Deep Learning?

Deep Learning (DL) is a subfield of Machine Learning (ML) that
leverages deep neural networks to model data

w\@ﬁ = Aransiical %d/w\kw%
@

m el TR

‘The University of Texas at Austin

Why Deep Learning?

Automatically learn representations from data, eliminating the
need for manual feature engineering

‘The University of Texas at Austin

Deep Learning - Enablers

Hardware - GPUs happened!
Data - Internet happened!

Frameworks - Pytorch, Tensorflow, JAX happened!

‘The University of Texas at Austin

Deep Learning - Applications

Any intelligent task!

Object recognition

Self driving

Playing games

Conversation agent

Media (image/video) generation

Artificial general intelligence?

‘The University of Texas at Austin

Deep Learning - Key Components

Model - a “neural network” to map input data to output prediction
Loss - a scalar that quantifies how well a model fits our data

Optimization - a process (typically “gradient descent”) to adjust the
model parameters to minimize the loss

‘The University of Texas at Austin

Model

Neural Networks

‘The University of Texas at Austin

Neural Networks - Brief History

e Early work on perceptrons in the 1950s laid the foundation

® Modeled after the human brain's neurons

‘v 0w %
- No7ANe/ANN
4,

v 9. ' O\ O O r @ 7rr Oy vy Oy Oy Oawr

KERIHR IR SRR NN o A

ORI ONE N RIS RN R
\\v4

RARS

X
AR

\ I,“\, 9 /,‘\\‘

1.9 O 7@\
L Sa\T4
Input Hidden Layers Shtput
Layer Layer

TEXAS

Image source - https://mriquestions.com/what-is-a-neural-network.html
‘The University of Texas at Austin

https://mriquestions.com/what-is-a-neural-network.html

Neural Networks - Building Block

Neuron/Perceptron a basic computational unit

Inputs - Receives multiple scalar inputs

Weights - Each input has a weight, importance of that input
Summation - The neuron adds up all the weighted inputs
Non-linearity - A filter/activation function

‘The University of Texas at Austin

Linear Neuron

1 neuron

This is the output
from one neuron.

Hover to see it
larger.

4

https://playground.tensorflow.org/ TEXA.S

‘The University of Texas at Austin

L
Non-linear Neuron > 4

1 neuron

i

< This is the output
from one neuron.
Hover to see it

larger. % “‘\R}Q}Y\,
NON W
< e\ D

- - -4 a=ReLU(2)

Z = wW1T1 + was

TEXAS

‘The University of Texas at Austin

https://playground.tensorflow.org/

: o = qty, = L
Non-linearities = R
e K~ [\ 0
o Rell %CM . [0 € vt0 TF

<L .\'(‘ 7(7/0 f s -
e Sigmoid %CH: ‘l/% __// |
\,+Q/d [‘éﬂ;_) Z__,@_}.)a}zew(z)

e Tanh (1) = %M\\r\%) ,\u
e A

T %w\j\{ < o0 A :

2\ -
g ” N M
%6\@ % V= s

‘The University of Texas at Austin

Deep Ne

Hidd

~,

3 neurons

ral Networ

en layer

Hidden layer 2

2 neurons

Output layer

N

"~
~~--- 3

he outputs are
ixed with varying
eights, shown
by the thickness
ofthe lines.

Lt
(

This is the output
from one neuron
Hover to see it
larger.

(J NS

o e\(to)

O CAA ®
()

A layered arrangement of neurons form a neural network

https://playground.tensorflow.org/

TEXAS

‘The University of Texas at Austin

Deep Neural Network
A1 o L
(/\ J Input layer

'\V)\ \ T wa&&ﬂ& 6\ O S
Agg 1B

Hidd er2 Output layer
ngurons
————— 3 ID /////’
"Nev \

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

\NC\ ﬂ\ e ot - |
r -
B 0 7

\M%\ H\ﬂxﬂg&u{%%mwﬂ“

TEXAS

https://playground.tensorflow.org/ \No’q
\ ‘The University of Texas at Austin

ook dn- 170,
Matrlx Representation

% Input layer Hid layer 1 Hidden layer 2 Output layer
C '\j C 1’3 ’LK neurdQs neurons
N7 s W e ol /I A :
"\\\~ e _,—" //// Oy
~ ,B — - o RO

P\m \N@] c @%%‘1-*

https://playground.tensorflow.org/ Z

z t
P\Sﬂ - o C Zc?ﬂ) & 'TEXAS

‘The University of Texas at Austin

Why Non-linearity?

1 neuron

https://playground.tensorflow.org/

.
"] !

— <
This is the output
from one neuron.
Hover to see it
larger.
T

\\wl
::=->@ @ » a=ReLU(z)

V4 wa
z = w1x1 + wak2

T2

TEXAS

‘The University of Texas at Austin

Why Non-linearity?

3 neurons 2 neurons

-
>
>
o e e e s e e
- - | V|

et < The outputs are
. mixed with varying
weights, shown
< by the thickness
This is the output of the lines.
from one neuron.

Hover to see it
larger.

Combination of linear neurons is still linear
© TEXAS

https://playground.tensorflow.org/ (link)
‘The University of Texas at Austin

https://playground.tensorflow.org/
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3,2&seed=0.96961&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Why Non-linearity?

3 neurons 2 neurons 6
x1 =, g o - —— e s |)
~, -~ S — e e
N, - -~ - - [] 4
N S e” \\> <= -~
:x/ - - \\’(\ ~ " 3
- ” —— &
- - g ———— — — —
X Y oll, S — _-————— ,1’ s s -
2 \ P ———— 2
\, l—l ” —7]
. \\ ” = = 1
N \\ A
S, < 0

weights, shown
by the thickness
This is the output of the lines.
from one neuron.
Hover to see it
larger.

E]
-~
==
e == The outputs are
i mixed with varying

' ' '
@ N -

Combination of non-linear neurons is much more expressive!

https://playground.tensorflow.org/ (link) TEXA.S

‘The University of Texas at Austin

https://playground.tensorflow.org/
https://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3,2&seed=0.96961&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Universal Approximation Theorem

A neural network with

e atleast one hidden layer,

® using a sufficiently large number of neurons and,
® an appropriate activation function

can approximate any continuous function on a compact subset of
reals to any desired degree of accuracy.

‘The University of Texas at Austin

Universal Approximation Theorem
s f*

Two neurons can be constructed to give a pulse function

TEXAS
https://medium.com/analytics-vidhya/neural-networks-and-the-universal-approximation-theorem-e5c387982eed
The Ui t Austi

niversity of Texas at Austin

L oss Functions

‘The University of Texas at Austin

Loss

® A measure of how “good” our model is for an input

e Usually quantified as the cost of an incorrect prediction

‘The University of Texas at Austin

Empirical Loss

The total loss averaged over entire dataset

N — Jeku oG
YV

{ = L 2 Llo")

L)

1=\

AN
QE‘W\@RRL@ %\ ?rcig%

‘The University of Texas at Austin

Loss Function MSE

Mean Squared Error (MSE)

52%2(@:—%)2

7;12 \} N

Q: C\é,\('\j%)& &

‘The University of Texas at Austin

Loss Function BCE

TS %Q?Qxy“\cm
Binary Cross Entropy (BCE) \/@QX%\@ -

P _% Z (yilogyi + (1 — y;)log (1 —9;))
=l—"
Ceo Lo VY
\ \ |
\}V\ P (L e by projnk) & CO7 >

%\ N

‘The University of Texas at Austin

Loss Function CE

Croonprosiinddon &y C dard Aot & eokfon Qefm\oj\um

Cross Entropy (CE)

| NoC
L= _szyzj log ¥i;

i=1 j=1

‘The University of Texas at Austin

[SY

.
Q
o]0]
©

£
Q

-

)

=

)
O
@)
(q]
Q
| -
()

-

)

S

[
=
e
=

Loss -

Example Task 1

‘The University of Texas at Austin

© TEXAS

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

WMST

Task - determine the age of the cat?

Loss -

Example Task 2

‘The University of Texas at Austin

TEXAS

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Example Task 3

Input

!!!I!i I!!!I!lli Task - determine cat vs dog vs bird?

Loss - C g /&@(QM

TEXAS
https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/
‘The University of Texas at Austin

https://www.megavoxels.com/learn/how-to-make-a-pixel-art-cat/

Optimization
Gradient Descent & Backprop

‘The University of Texas at Austin

Optimization Overview

Minimize the loss by adjusting the model parameters

i, ?ﬂs La S wlm

‘The University of Texas at Austin

Gradient Descent

Iteratively update parameters in opposite direction of the gradient

Gradient Directions at a Random Initialization Gradient Descent Trajectory on the Loss Surface
—o— GD Path

Gradient @ Random Init

TEXAS

‘The University of Texas at Austin

Gradient Descent

Gradient Descent Trajectory on the Loss Surface

Initialize parameters (weightiV

For each iteration

1. Compute the loss L /

2. Compute gradients dL/dw

3. Update parameters w = w -(n ¥ (dL/dw)

nere 1is theeaming 13«
where n is e@\a alie

‘The University of Texas at Austin

Gradient Descent

Initialize parameters (weights w)

For each iteration
1. Compute the loss L
[2. Compute gradients dL/dw]
3. Update parametersw =w-n * (dL/dw)

where n is the learning rate

Gradient Descent Trajectory on the Loss Surface

‘The University of Texas at Austin

Backpropagation

e Neural networks require an efficient way to compute the
gradients for all parameters

e Backpropagation - chain rule to propagate errors from the
output back to the input layer

‘The University of Texas at Austin

Backpropagation

Chain Rule - for a parameter @ that affects the loss £ through an

intermediate variable 2
0L 0L 0z

00~ 0z 00

Forward Pass - Compute all intermediate activations 7Y and Al
\VanS Vo'

Backward Pass - Starting at the output layer, compute the gradient
and propagate it backwards

‘The University of Texas at Austin

Sample DL Algorithm

‘The University of Texas at Austin

Task - classify orange from blue

TEXAS

‘The University of Texas at Austin

Loss

Binary Cross Entropy (BCE)

1 N

L= ; (y; log g + (1 — ;) log (1 — 4;))

‘The University of Texas at Austin

Model

Sigmoid activation, 3 hidden neuron, 1 output neuron

At -~ (O
< C

The outputs are
mixed with varying
weights, shown
by the thickness

of the lines.

g/output

A€ neuron.
Hover to see it
larger.

Input layer Hidden layer Output layer

TEXAS

‘The University of Texas at Austin

Optimization

Gradient Descent Trajectory on the Loss Surface

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/d

3. Update parameters w =w-n * (dL/dw)

where n is the learning rate.

@ TEXAS

‘The University of Texas at Austin

Optlmlzait\lon Forward Pass & Loss

Loe 1B =~ —*

\,
\\

{ WL M
\’ s < Ny ixed with varying
NN weights, shown
>~ __—-—" bythethickness
W N\ & K [
< This is the output
from one neuron.
Hover to see it
larger.

| L.
ol A C2)
NC?J P\(’“] 7 — ﬁ - (Cl)

SLG%“\/D A (= Y). ﬂsg(l/y))

‘The University of Texas at Austin

niversity of Texas at Austin

Optimization - Backward Pass

EO’VWJ“ Ce] C2)
Cal _ Uﬂfrﬂgf \J :7 _QL - W q & D"‘\\
= DN’ B
\) 25 T2 :
P\Y/’):.] ~ GCZCL]) :'_? igf-p\} . AL (,"" ‘\‘L) “e
- 22 s T TP 0 o - a)
[tq v C)
km; Wl S Z, =
Tl C\J C\J)
2 - L Wi AVl w
AR

Full Algorithm

e Step 1 (Forward Pass): Compute activations

e Step 2 (Loss Computation): Evaluate the loss using the predicted probability
and the true probability

e Step 3 (Backward Pass): Use backpropagation to compute gradients for all
parameters

e Step 4 (Parameter Update): Adjust model weights using gradient descent

Repeat for multiple steps until convergence

TEXAS

niversity of Texas at Austin

In Practice

e Efficiency - mini-batch gradient descent
e Learning Rate - adaptive learning rate gradient descent

e Regularization - dropout, weight decay, early stopping, etc

‘The University of Texas at Austin

