Spring 2025 I}EXAS

Machine Learning WB
CS391L

Lecture 9 - Introduction to Deep Learning

Nilesh Gupta, Inderijit Dhillon



What is Deep Learning?

Deep Learning (DL) is a subfield of Machine Learning (ML) that
leverages deep neural networks to model data
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Why Deep Learning?

Automatically learn representations from data, eliminating the
need for manual feature engineering
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Deep Learning - Enablers

Hardware - GPUs happened!
Data - Internet happened!

Frameworks - Pytorch, Tensorflow, JAX happened!
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Deep Learning - Applications

Any intelligent task!

Object recognition

Self driving

Playing games

Conversation agent

Media (image/video) generation

Artificial general intelligence?
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Deep Learning - Key Components

Model - a “neural network” to map input data to output prediction
Loss - a scalar that quantifies how well a model fits our data

Optimization - a process (typically “gradient descent”) to adjust the
model parameters to minimize the loss
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Model

Neural Networks
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Neural Networks - Brief History

e Early work on perceptrons in the 1950s laid the foundation

® Modeled after the human brain's neurons
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https://mriquestions.com/what-is-a-neural-network.html

Neural Networks - Building Block

Neuron/Perceptron a basic computational unit

Inputs - Receives multiple scalar inputs

Weights - Each input has a weight, importance of that input
Summation - The neuron adds up all the weighted inputs
Non-linearity - A filter/activation function
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Linear Neuron

1 neuron

This is the output
from one neuron.

Hover to see it
larger.
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Why Non-linearity?

1 neuron
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Why Non-linearity?
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Universal Approximation Theorem

A neural network with

e atleast one hidden layer,

® using a sufficiently large number of neurons and,
® an appropriate activation function

can approximate any continuous function on a compact subset of
reals to any desired degree of accuracy.
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Universal Approximation Theorem
s f*

Two neurons can be constructed to give a pulse function
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L oss Functions
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Loss

® A measure of how “good” our model is for an input

e Usually quantified as the cost of an incorrect prediction
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Empirical Loss

The total loss averaged over entire dataset
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Loss Function MSE

Mean Squared Error (MSE)
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Loss Function BCE
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Loss Function CE
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Example Task 1
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WMST

Task - determine the age of the cat?

Loss -

Example Task 2
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Example Task 3

Input

!!!I!i I!!!I!lli Task - determine cat vs dog vs bird?

Loss - C g /&@(QM
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Optimization
Gradient Descent & Backprop
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Optimization Overview

Minimize the loss by adjusting the model parameters
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Gradient Descent

Iteratively update parameters in opposite direction of the gradient

Gradient Directions at a Random Initialization Gradient Descent Trajectory on the Loss Surface
—o— GD Path

Gradient @ Random Init
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Gradient Descent

Gradient Descent Trajectory on the Loss Surface

Initialize parameters (weightiV

For each iteration

1. Compute the loss L /

2. Compute gradients dL/dw

3. Update parameters w = w -(n ¥ (dL/dw)

nere 1is theeaming 13«
where n is e@\a alie
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Gradient Descent

Initialize parameters (weights w)

For each iteration
1. Compute the loss L
[ 2. Compute gradients dL/dw]
3. Update parametersw =w-n * (dL/dw)

where n is the learning rate

Gradient Descent Trajectory on the Loss Surface
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Backpropagation

e Neural networks require an efficient way to compute the
gradients for all parameters

e Backpropagation - chain rule to propagate errors from the
output back to the input layer
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Backpropagation

Chain Rule - for a parameter @ that affects the loss £ through an

intermediate variable 2
0L 0L 0z
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Forward Pass - Compute all intermediate activations 7Y and Al
\VanS Vo'

Backward Pass - Starting at the output layer, compute the gradient
and propagate it backwards
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Sample DL Algorithm
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Task - classify orange from blue

TEXAS
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Loss

Binary Cross Entropy (BCE)
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Model

Sigmoid activation, 3 hidden neuron, 1 output neuron
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Optimization

Gradient Descent Trajectory on the Loss Surface

Initialize parameters (weights w)

For each iteration

1. Compute the loss L

2. Compute gradients dL/d

3. Update parameters w =w-n * (dL/dw)

where n is the learning rate.
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Optlmlzait\lon Forward Pass & Loss
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Optimization - Backward Pass
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Full Algorithm

e Step 1 (Forward Pass): Compute activations

e Step 2 (Loss Computation): Evaluate the loss using the predicted probability
and the true probability

e Step 3 (Backward Pass): Use backpropagation to compute gradients for all
parameters

e Step 4 (Parameter Update): Adjust model weights using gradient descent

Repeat for multiple steps until convergence
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In Practice

e Efficiency - mini-batch gradient descent
e Learning Rate - adaptive learning rate gradient descent

e Regularization - dropout, weight decay, early stopping, etc
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